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University of Toulouse, ISAE-SUPAERO

Toulouse, France
jordi.vila-valls@isae-supaero.fr

Eric Chaumette
University of Toulouse, ISAE-SUPAERO

Toulouse, France
eric.chaumette@isae-supaero.fr

Abstract—In this communication we develop a new full
Slepian-Bangs formula adapted to observations on Lie Groups
(LGs) distributed according to a Gaussian distribution on LGs
(CGD), where both the LG mean and LG covariance depend on
an unknown LG parameter. This formulation, which can be seen
as a generalization on LGs of the full Slepian-Bangs formula for
the Euclidean Gaussian distribution, is obtained using LG tools
and properties of the CGD. A closed-form expression is then
obtained for a modified Wahba’s problem where the observations’
covariance matrix depends on the unknown rotation matrix. Such
expression is validated through numerical simulations.

Index Terms—Slepian-Bangs formula, Gaussian distribution on
Lie groups, Fisher information.

I. INTRODUCTION

The Fisher information is a central concept which appears
in several fields of science. It is primarily known in the
asymptotic statistical theory [1] (maximum likelihood estima-
tion, hypothesis testing, etc.), but it is also well investigated
in classical and quantum physics [2]. One can also mention
the Fisher-Rao distance [3], based on the Fisher information,
that serves as a cornerstone in information geometry [4]. In
the signal processing community, the Fisher information is
primarly used through the Cramér-Rao bound (CRB). This
bound allows to assess the possible achievable performance
limits in terms of variance or mean square error, for an
unbiased estimator, in the parametric context [5] but also,
more recently, in the semi-parametric [6] or even in the
non-parametric contexts [7]. As a byproduct, closed-form
expressions of the CRB for a particular problem have been
used in engineering for system design [8].

Particularly, in the context of parametric estimation, the
success of the CRB can be attributed to the so-called Slepian-
Bangs formula [9], [10], which provides a closed-form ex-
pression (i.e., free from expectation operators) of the Fisher
information for the fundamental case where the observations
z ∈ RN are assumed to be Gaussian, with mean m and covari-
ance matrix Σ parameterized by the unknown parameter vector
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θ ∈ RP ; z ∼ N (m (θ) ,Σ (θ)). This formula encompasses a
large class of engineering problems, and only the derivatives
of m (θ) and Σ (θ) w.r.t. θ have to be computed in order to
obtain interesting results in terms of achievable performance
limits or for system design. Since the seminal work of Slepian
and Bangs [9], this formula has been extended in many ways.
One can mention the extension to complex-valued observations
and/or parameters [11], also the extension to a broader class of
probability distributions of the observations [12], or the case
where the covariance matrix is non-circular [13].

While these works focused on Euclidean observations and
parameters (i.e., z ∈ RN and θ ∈ RP ), recent estimation
problems are more effectively characterized with observations
and/or parameters lying in more complex/structured spaces.
An important example is when the parameter to be estimated
is a covariance matrix. The original Slepian-Bangs formula
overlooks the fact that this parameter lies in the space of
symmetric positive definite (SPD) matrices. Consequently, the
obtained Fisher information (and CRB) is just an approxima-
tion. Thus, to address geometrical structures of the parameter
space, non-Euclidean Fisher information matrices have been
proposed. When the parameter lies in a general Riemannian
manifold, the so-called intrinsic CRB has been developed and
studied in [14] and, for instance, it has been shown that
classical results known for covariance matrix estimation (bias,
covariance error) in the Gaussian context are invalidated in
light of the SPD matrix point of view.

In this work, we focus on Matrix Lie groups, a Riemmanian
manifold equipped with a group structure, that have important
applications in engineering such as computer vision [15],
robotics [16] and GNSS navigation [17]. Previous works [18],
[19], [20] derived intrinsic CRBs for LG (LG-CRBs). Further-
more, closed-form expressions of the LG Fisher information
(LG-FIM) have been previously provided for some partic-
ular scenarios: when only the mean parameter (LG-mean)
is unknown [21], [22], especially for Gaussian distributions
on LGs (CGD). In this context, i.e., when both parameters
and observations lie in a (possibly distinct) LG, the need



for a Slepian-Bangs type formula of the Fisher information
(devoid from the expectation) for CGDs is of utmost interest.
A first simplified version has been proposed in [22], when the
LG-parameter depends on the LG-mean with a known LG-
covariance (LG-SP).

The main contribution of this paper is to extend the LG-SP
[22] by considering the general case where the LG-covariance
also depends on the LG-parameter. This general framework
yields a full Slepian-Bangs formula on LGs (LG-F-SP). This
situation is typically encountered when the unknown LG-
parameter is correlated with the LG noise of observations.
Examples include the Wahba’s model [23] or the dispersion
model of space debris [24] on the LG SE(3). To achieve this,
we use the theoretical expression of the LG-FIM for CGDs.
Contrary to [22], the LG derivatives are computed according
to the unknown parameter nested in the LG-covariance. This
implies that the resulting Slepian-Bangs formula reveals cor-
relation terms between LG-mean and LG-covariance. Then,
a closed-form expression of the LG-F-SP is derived for a
modified Wahba’s problem in which the noise, depending
on an unknown rotation matrix, lies on the LG SO(3). By
inverting the derived LG-F-SP, we obtain the LG-CRB for this
problem. Finally, the validity of these expressions is assessed
through numerical simulations.

II. REVIEWING THE SLEPIAN-BANGS ON LGS

A. LG definition
A matrix LG G ⊂ Rn×n is a matrix space that respects

the properties of smooth manifold and group. This implies the
definition of a tangent space at the identity, also referred to
as the Lie algebra, and denoted g, directly connected to the
tangent space at each point X ∈ G by the group operation.
The exponential and logarithmic maps, denoted respectively,
ExpG : g → G and LogG : G → g associate each element
of the LG to g. Since the latter is isomorphic to Rm, we
can define two bijections [.]∧ : Rm → g and [.]∨ : g →
Rm. Then, the exponential and logarithmic mappings can be
reformulated, ∀ a ∈ Rm, Exp∧G (a) = ExpG ([a]∧G) and
∀ X ∈ G, [LogG (X)]

∨
G = Log∨

G (X) . For more details on
LG background, readers can refer to [21], [22].

B. Simplified Slepian-Bangs formula on LGs
Let us consider a set of independent observations denoted

as Z = {Z1, . . . ,ZN}, lying on a LG G′, following a CGD
distribution, as described in [25],

Zi = Hi(M)Exp∧
G′ (ni) ni ∼ N (0,Σ) ∀i ∈ {1, . . . , N}, (1)

where M is the unknown parameter belonging to another LG
G and Hi : G → G′ is a smooth function. The Intrinsic Mean
Squared Error (IMSE) between an unbiased estimator M̂ and
M, in the intrinsic sense as defined in [22], is given by

E = E
[
Log∨

G

(
M−1M̂

)
Log∨G

(
M−1M̂

)
⊤
]
. (2)

This error is lower-bounded by the CRB on LGs (LG-CRB),
which is the inverse of the Slepian-Bangs formula I (LG-SP):

PICRB = I−1, (3)

I =

N∑
i=1

LR
Hi(M)

(
E
[
ψ̃

⊤
i Σ

−1ψ̃i

])(
LR
Hi(M)

)⊤
, (4)

where ψ̃i = ψG′(Log∨
G′

(
Hi(M)−1 Zi

)
) is the inverse of

the left Jacobian of G′, and LR
Hi(M) represents the right Lie

derivative of Hi. For further details regarding the computation
of these quantities, readers can refer to [24].

III. FULL SLEPIAN-BANGS ON LIE GROUPS:
FORMULATION AND DEMONSTRATION

In this section, we present and demonstrate the full Slepian-
Bangs (F-LG-SP), which extends (4) to the general case where
the covariance matrix of (1) depends on M.

A. Full Slepian-Bangs formula on LGs

We consider now that the LG observation Zi ∈ G′ (of
dimension S′, i ∈ {1, . . . , N}) is related to M ∈ G (of
dimension S), through the concentrated Gaussian model:

Zi = Hi(M)Exp∧
G′ (ϵi) , ϵi ∼ N (0,Σ(M)). (5)

Theorem III-A.1 (LG-F-SP for a CGD): the LG-F-SP I on
M for the observation model (5) is given by:

I = I1 + I2 + I⊤
2 + I3 (6)

wherein,

I1 =

N∑
i=1

L⊤
Hi(M)ψ

⊤
i Σ(M)−1ψi LHi(M) (7)

I2 =

1

2
E
(
L⊤
Hi(M)ψ

⊤
i Σ−1li

{
l⊤i dΣ

−1
1 li, . . . , l

⊤
i dΣ

−1
S li

})
+

1

2
E
(
L⊤
Hi(M)ψ

⊤
i Σ−1li

)
dlog|Σ|⊤ (8)

(I3)k,l =
N

2
tr
(
Σ−1dΣk Σ

−1dΣl

)
∀(k, l) ∈ J1, . . . , SK2 (9)

where we make use of the following notations:

LHi(M) =
∂ lG′(Hi(MExp∧

G (δ) ),Zi)

∂δ

∣∣∣∣
δ=0

∈ RS′×S ,

ψi = ψG′(Log∨
G′

(
Hi(M)−1Zi

)
) ∈ RS′×S′

,

li = Log∨
G′

(
Hi(M)−1Zi

)
∈ RS′

,

Σ = Σ(M) ∈ RS′×S′
,

dΣl =
∂Σ(MExp∧

G (δ) )

∂δl

∣∣∣∣
δ=0

∈ RS′×S′
∀l ∈ J1, . . . , SK

and dlog|Σ|= ∂log|Σ(MExp∧
G (δ) )|

∂δ

∣∣∣∣
δ=0

∈ RS .

In the following, for the sake of clarity, we define:

dLNΣ,M(Z,M) ≜

∂logN (Z;Hi(MExp∧
G (δ)) ,Σ(MExp∧

G (δ))

∂δ

∣∣∣∣
δ=0

dLNM(Z,M) ≜
∂logN (Z;Hi(MExp∧

G (δ)) ,Σ(M))

∂δ

∣∣∣∣
δ=0

dLNΣ(Z,M) ≜
∂ logN (Z;Hi(M),Σ(MExp∧

G (δ)) )

∂δ

∣∣∣∣
δ=0



B. Demonstration

By definition, the LG-FIM is given by [21, eq. (11)]:

I = E

(
∂lp(M, δ1)

∂δ1

∣∣∣∣
δ1=0

∂lp(M, δ2)

∂δ2

⊤
∣∣∣∣∣
δ2=0

)
, (10)

where lp(M, δ) ≜ log p(Z|MExp∧
G (δ) ) and can be written,

by independence of each Zi, as
N∑
i=1

E(dLNΣ,M(Zi,M) dLNΣ,M(Zi,M)⊤). (11)

Furthermore, the generic term can be divided in the following
way: dLNΣ,M(Z,M) = dLNM(Z,M) + dLNΣ(Z,M).
Then, we have

I = I1 + I2 + I⊤
2 + I3

with I1 =
N∑
i=1

E
(
dLNM(Zi,M) dLNM(Zi,M)⊤

)
I2=

N∑
i=1

E
(
dLNM(Zi,M)dLNΣ(Zi,M)⊤

)
and I3

=
N∑
i=1

E
(
dLNΣ(Zi,M) dLNΣ(Zi,M)⊤

)
.

Now, we are interested in detailing I1, I2 and I3.

1) Computation of I1:

First, it is straightforward to see that:

E
(
dLNM(Zi,M) dLNM(Zi,M)⊤

)
=

− E

(
∂logN (Zi;Hi(MExp∧G (δ1) Exp∧

G (δ2) ),Σ(M))

∂δ1 ∂δ2

∣∣∣∣
δ1,δ2=0

)
(12)

Second, it is proved in [22, Theorem 4.2.1] that the previous
expression is equal to L⊤

Hi(M)ψ
⊤
i Σ(M)−1ψi LHi(M).

2) Computation of I2:

To compute I2, we have to determine an expression of
dLNM(Zi,M) and dLNΣ(Zi,M). First, we know that up
to a constant value K ∈ R:

logN (Zi;Hi(M),Σ(M)) = K−log |Σ|− 1

2
∥li∥2Σ, (13)

which implies that, by usual derivations:

dLNM(Zi,M) = −dliΣ
−1li (14)

with dli =
∂lδi
∂δ

∣∣∣∣∣
δ=0

and lδi =Log∨
G′

(
Hi(MExp∧

G (δ) )−1Zi

)
.

Furthermore, the BCH formula [24, eq. (2)], informs us that
lδi = li − LHi

(M)⊤ψ⊤
i δ then, by deriving according to δ,

dLNM(Zi,M) = −L⊤
Hi(M)ψ

⊤
i Σ−1li (15)

On the other hand, by derivation of the equation (13)
according to Σ(M), we end up with:

dLNΣ(Zi,M) = −{l⊤i dΣ
−1
1 li, . . . , l

⊤
i dΣ

−1
S li} − dlog|Σ|

(16)

Consequently,

E(dLNM(Zi,M) dLNΣ(Zi,M)⊤) =

1

2

N∑
i=1

E
(
L⊤
Hi(M)ψ

⊤
i Σ−1li

{
l⊤i dΣ

−1
1 li, . . . , l

⊤
i dΣ

−1
S li

})
+

1

2

N∑
i=1

E
(
LHi(M)⊤ψ⊤

i Σ−1li

)
dlog|Σ| (17)

3) Computation of I3:

We recall that,

I3 =

N∑
i=1

E
(
dLNΣ(Zi,M) dLNΣ(Zi,M)⊤

)
. (18)

By taking advantage of (16), we can develop I3 into four
terms:

I3 =
N

4
E
(
dlog|Σ|dlog|Σ|⊤

)
+

1

4

N∑
i=1

E
(
dlog|Σ|

{
l⊤i dΣ−1

1 li, . . . , l
⊤
i dΣ−1

S li

})
+

1

4

N∑
i=1

E

({
l⊤i dΣ−1

1 li, . . . , l
⊤
i dΣ−1

S li

}⊤
dlog|Σ|⊤

)

+
1

4

N∑
i=1

E

({
l⊤i dΣ−1

1 li, . . . , l
⊤
i dΣ−1

S li

}⊤

{
l⊤i dΣ−1

1 li, . . . , l
⊤
i dΣ−1

S li

})
. (19)

By using (dlog|Σ|)l = tr
(
Σ−1dΣl

)
, the (k, l) component is

given by:

(I3)k,l =
N

4
tr
(
Σ−1 dΣk

)
tr
(
Σ−1 dΣl

)
+

1

4
tr
(
Σ−1 dΣk

) N∑
i=1

E
(
l⊤i dΣ−1

l li

)
+

1

4
tr
(
Σ−1 dΣk

) N∑
i=1

E
(
l⊤i dΣ−1

l li

)
+

1

4

N∑
i=1

E
(
l⊤i dΣ−1

k lil
⊤
i dΣ−1

l li

)
. (20)

By definition, Σ is the covariance of the model (5) and:

Σ = E
(
lil

⊤
i

)
(21)

∂Σ(MExp∧
G (δ) )−1

∂δk

∣∣∣∣
δ=0

= −Σ−1 dΣk Σ
−1 (22)

then we have that,

E
(
l⊤i dΣkli

)
= −tr

(
Σ−1 dΣk

)
. (23)



It ensues, by substitution of (22) and (23) in (20),

(I3)k,l = −1

4

N∑
i=1

tr
(
Σ−1 dΣk

)
tr
(
Σ−1 dΣl

)
+

1

4

N∑
i=1

E
(
l⊤i dΣ−1

k lil
⊤
i dΣ−1

l li

)
. (24)

Furthermore, by using the fact that li ∼ N (0,Σ), we use the
following identity [11, Appendix 15-C , pp. 565]:

E
(
l⊤i dΣ

−1
k li l

⊤
i dΣ−1

l li)
)
= 2 tr

(
Σ−1 dΣk Σ

−1 dΣl

)
+ tr

(
Σ−1 dΣk

)
tr
(
Σ−1 dΣl

)
, (25)

which provides,

(I3)k,l =
N

2
tr
(
Σ−1 dΣk Σ

−1 dΣl

)
. (26)

IV. CLOSED-FORM EXPRESSIONS AND NUMERICAL
SIMULATIONS

In this section, we derive the full Slepian-Bangs in a closed-
form for the well-known Wahba’s rotation model on SO(3).
In this framework, the uncertainty on the unobserved cloud
points results in a covariance matrix of the observations that
depends on the unknown rotation between the cloud points.

A. Formulation of the problem

The Wabha’s problem consists in finding the unknown
rotation M ∈ SO(3) connecting two 3D point clouds {zi}Ni=1

and {pi}Ni=1, expressed in two different frames. This can be
modeled as,

zi = Mpi + ni ∀i ∈ {1, . . . , N} ni ∼ N (0,Q). (27)

In addition to the measurement noise of zi, the points {pi}Ni=1

are also measured with some uncertainties. They can be
modeled by the following Gaussian distribution with mean
pp
i and covariance matrix Qp,

p(pi) = N (pi;p
p
i ,Q

p). (28)

Consequently, the distribution of zi knowing M can be rewrit-
ten by using the conditional property and Gaussian distribution
properties,

p(zi|M) =

∫
p(zi|pp

i ,M)p(pp
i )dp

p
i (29)

=N (zi;Mpp
i ,MQp M⊤ +Q). (30)

Hence, we are faced with a problem where both mean and
covariance depend on the unknown parameter M. Then, the
previous model can be rewritten on the LG G′ = R3 with the
compact CGD form:

Zi = Hi(M) Exp∧R3 (ϵi) , ϵi ∼ N (0,Σ(M)), (31)

with Hi(M) ≜

[
I Mpp

i

0 1

]
, Exp∧R3 (ϵi) ≜

[
I ϵi
0 1

]
and

Σ(M) ≜ MQp M⊤ +Q.

B. Full Slepian-Bangs formula computation

Theorem IV-B.1 (LG-F-SP for the Wabha’s problem):
We consider the LG observation defined by equation (31).
Furthermore, let us define {Gl}3l=1 a basis of se(3). The
Slepian-Bangs formula is given by ∀(k, l) ∈ {1, 2, 3}2:

I = IR + IΣ (32)

(IR)k,l =
N∑
i=1

(pp
i )

⊤
G⊤

k M⊤Σ(M)−1MGl p
p
i (33)

(IΣ)k,l =
N

2
tr
(
Σ(M)−1

(
MGk Q

p M⊤ +MQp G⊤
k M⊤)

Σ(M)−1
(
MGl Q

p M⊤ +MQp G⊤
l M⊤)) (34)

Demonstration
We start by using the formula (6):

I = I1 + I2 + I⊤
2 + I3 (35)

• First, we observe that[
LR
Hi(M)

]
l
=

(
∂Hi(MExp∧

SO(3) (δ) )

∂δ

∣∣∣∣∣
δ=0

)
l

(36)

= M
∂Exp∧SO(3) (δ)

∂δl

∣∣∣∣∣
δ=0

pp
i = MGlp

p
i (37)

then, we deduce that I1 = IR
• Second, we remark that I2 is null. Indeed, the LG of the

observations is R3, hence commutative. It implies that:

I2 = Σ(M)−1E
(
{lil⊤i dΣ1li, . . . , lil

⊤
i dΣS li}

)
(38)

As li is a centered Gaussian vector, E
(
li l

⊤
i dΣS li

)
= 0.

• Third, the term I3 can be detailed with (20) by computing
the term dΣk.

dΣk =
∂Σ(MExp∧

SO(3) (δ) )

∂δk

∣∣∣∣∣
δ=0

(39)

=
∂
(
MExp∧

SO(3) (δ) QpExp∧
SO(3) (δ)

⊤M⊤
)

∂δk

∣∣∣∣∣∣
δ=0

(40)

= MGk Q
p M⊤ +MQp G⊤

k M⊤ (41)

C. Simulation results

In this section, we propose to test and validate the proposed
Slepian-Bangs formula provided by equation (32). To achieve
that, we first simulate observations according to the formula
with arbitrary values of pp

i , Q = σ2I3 and Qp = σ2
pI3.

Then, we compare the inverse of the LG-F-SP (32), which
yields the LG-F-CRB with the empirical LG-MSE given by
1
Nr

Nr∑
nr=1

∥Log∨
G

(
M−1M̂(nr)

)
∥2, where M̂(nr) is the nr

realization of the maximum likelihood estimator of the model

(31) minimizing
N∑
i=1

∥zi−Mpp
i ∥2Σ−1(M)

+N log|Σ(M)|. The

latter is obtained iteratively with a Gauss-Newton algorithm,



where at each iteration l, M(l) is updated by minimizing
N∑
i=1

∥zi −Mpp
i ∥2Σ−1(M(l))

. The unknown Σ(M(l)) is updated

by 1
N−1

N∑
i=1

(zi −M(l)pp
i ) (zi −M(l)pp

i )
⊤. In Figures 1a and

1b, we draw respectively both LG-MSE and LG-CRB, w.r.t.
the number of observations for σ2 = 0.012 and σ2

p = 12, and
w.r.t. varying values of the standard deviation σ for a fixed
N = 5.

0 5 10 15 20 25 30
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1.5
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2.5

3

(a) LG-CRB and LG-MSE w.r.t the number of
observations N .
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(b) LG-CRB and LG-MSE w.r.t varying values
of the measurement noise σ2.

We observe the consistency of the LG-CRB with regards to
the LG-MSE, particularly its asymptotic behavior. Specifically,
in Fig. 1a, the LG-MSE aligns with the LG-F-CRB when the
number of observations increases. Moreover in Fig. 1b the
LG-F-CRB and the LG-MSE align when measurement noise
variance is low. If the latter increases, the LG-MSE drifts away
due to bias. This behaviour, in line with the Euclidean case,
validates the proposed LG-F-SP.

V. CONCLUSIONS AND PERSPECTIVES

In this article, we derived a full Slepian-Bangs formula on
LGs for Gaussian distributions on LGs, where the unknown
parameter is embedded in both LG-mean and LG-covariance.
Future directions of this research will involve extending
the Slepian-Bangs formula to LG models incorporating non-
Gaussian noise in the Lie algebra. Specifically, we may focus
on modeling observations with elliptical noise distributions to
characterize heavy-tailed behaviours.
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